Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Blood Substitutes and Oxygen Biotherapeutics ; : 131-148, 2022.
Article in English | Scopus | ID: covidwho-2323803

ABSTRACT

Transfusion of erythrocytes (RBC) to treat acute or chronic anemia has significant drawbacks, given the risks of transfusion, volunteer donor requirements, limited supply with increasing demand, especially during a pandemic such as COVID-19, and erythrocytes are often unavailable in emergency situations or where blood is not an option. Significant research has been undertaken for almost 100 years to attempt to replicate the functions of RBCs with oxygen carriers/oxygen therapeutics based on hemoglobin. Oxygen carriers that have been evaluated are hemoglobin-based oxygen carriers (HBOCs). HBOCs utilize hemoglobin (Hb) to transport oxygen around the body. Blood transfusion may be critical therapy in hemorrhagic trauma, various pathologies both acute and chronic, and surgical interventions. It has some important goals: the first and most important is to recover oxygen delivery to organs, additionally, when restoration of circulating blood volume is achieved, maintenance of adequate blood pressure to ensure enough blood flow to deliver the oxygen to the microcirculation and resolving oxygen debt. This chapter will review the history of HBOCs, discuss how HBOCs have been designed and how developed HBOCs differ from each other based on their pharmacology and physiology, highlight all major products to undergo human trials including one extensively studied product approved for human use in two countries (Hemopure), introduce newer products still under development, and finally present translational and clinical trials studying whether or not certain HBOCs may cause coagulation issues. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2022.

2.
Viruses ; 15(1)2022 Dec 20.
Article in English | MEDLINE | ID: covidwho-2234075

ABSTRACT

People with diabetes have an increased risk of experiencing adverse COVID-19 outcomes. COVID-19 vaccination is, therefore, highly recommended. However, people with diabetes have an inherently elevated risk of thrombotic events and the impact of the vaccination on the coagulation system in this patient population remains to be elucidated. The aim of this study was to investigate the impact of COVID-19 vaccination on the haemostatic system in people with type 1 or type 2 diabetes. We evaluated the effects of COVID-19 vaccination (BioNTech Pfizer, Moderna, AstraZeneca) on standard coagulation parameters, whole blood coagulation (Thrombelastometry), platelet function (impedance aggregation), and thrombin generation (calibrated automated thrombography) in people with type 1 diabetes mellitus (n = 41) and type 2 diabetes mellitus (n = 37). Blood sampling points were prior to vaccination and two weeks after the respective vaccination. Thrombelastometry measurements indicated moderately increased clot formation post-vaccination in people with type 1, as well as with type 2, diabetes: "Clot formation times" were significantly shorter, and both "maximum clot firmness" and "alpha angles" were significantly higher, as compared to the respective pre-vaccination values. Therefore, TEM parameters were not altered after vaccination in patients receiving ASA. Moreover, platelet aggregation was enhanced in people with type 1 diabetes, and plasma levels of D-Dimer were increased in people with type 2 diabetes, following COVID-19 vaccination. All other standard coagulation parameters, as well as thrombin generation, were not affected by the vaccination. The coagulation responses of people with diabetes to COVID-19 vaccination were only subclinical and comparable to those observed in healthy individuals. Our findings suggest that people with diabetes do not face an increased activation of the coagulation post-vaccination.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hemostatics , Humans , COVID-19 Vaccines/adverse effects , Thrombin , COVID-19/prevention & control , Vaccination
3.
Thromb Res ; 216: 120-124, 2022 08.
Article in English | MEDLINE | ID: covidwho-1915030

ABSTRACT

BACKGROUND: The coronavirus disease-2019 (COVID-19) is a systemic disease with severe implications on the vascular and coagulation system. A procoagulant platelet phenotype has been reported at least in the acute disease phase. Soluble P-selectin (sP-sel) in the plasma is a surrogate biomarker of platelet activation. Increased plasma levels of sP-sel have been reported in hospitalized COVID-19 patients associated with disease severity. Here, we evaluated in a longitudinal study the sP-sel plasma concentration in blood donors who previously suffered from moderate COVID-19. METHODS: 154 COVID-19 convalescent and 111 non-infected control donors were recruited for plasma donation and for participation in the CORE research trial. First donation (T1) was performed 43-378 days after COVID-19 diagnosis. From most of the donors the second (T2) plasma donation including blood sampling was obtained after a time period of 21-74 days and the third (T3) donation after additional 22-78 days. Baseline characteristics including COVID-19 symptoms of the donors were recorded based on a questionnaire. Platelet function was measured at T1 by flow cytometry and light transmission aggregometry in a representative subgroup of 25 COVID-19 convalescent and 28 control donors. The sP-sel plasma concentration was determined in a total of 704 samples by using a commercial ELISA. RESULTS: In vitro platelet function was comparable in COVID-19 convalescent and control donors at T1. Plasma samples from COVID-19 convalescent donors revealed a significantly higher sP-sel level compared to controls at T1 (1.05 ± 0.42 ng/mL vs. 0.81 ± 0.30 ng/mL; p < 0.0001) and T2 (0.96 ± 0.39 ng/mL vs. 0.83 ± 0.38 ng/mL; p = 0.0098). At T3 the sP-sel plasma level was comparable in both study groups. Most of the COVID-19 convalescent donors showed a continuous decrease of sP-sel from T1 to T3. CONCLUSION: Increased sP-sel plasma concentration as a marker for platelet or endothelial activation could be demonstrated even weeks after moderate COVID-19, whereas, in vitro platelet function was comparable with non-infected controls. We conclude that COVID-19 and additional individual factors could lead to an increase of the sP-sel plasma level.


Subject(s)
COVID-19 , Biomarkers , COVID-19 Testing , Humans , Longitudinal Studies , P-Selectin , Platelet Activation
4.
Int J Mol Sci ; 22(16)2021 Aug 10.
Article in English | MEDLINE | ID: covidwho-1662672

ABSTRACT

BACKGROUND: Today there are many devices that can be used to study blood clotting disorders by identifying abnormalities in blood platelets. The Total Thrombus Formation Analysis System is an automated microchip flow chamber system that is used for the quantitative analysis of clot formation under blood flow conditions. For several years, researchers have been using a tool to analyse various clinical situations of patients to identify the properties and biochemical processes occurring within platelets and their microenvironment. METHODS: An investigation of recent published literature was conducted based on PRISMA. This review includes 52 science papers directly related to the use of the Total Clot Formation Analysis System in relation to bleeding, surgery, platelet function assessment, anticoagulation monitoring, von Willebrand factor and others. CONCLUSION: Most available studies indicate that The Total Thrombus Formation Analysis System may be useful in diagnostic issues, with devices used to monitor therapy or as a significant tool for predicting bleeding events. However, T-TAS not that has the potential for diagnostic indications, but allows the direct observation of the flow and the interactions between blood cells, including the intensity and dynamics of clot formation. The device is expected to be of significant value for basic research to observe the interactions and changes within platelets and their microenvironment.


Subject(s)
Blood Coagulation , Blood Platelets/physiology , Lab-On-A-Chip Devices/standards , Microfluidics/methods , Thrombosis/blood , Blood Platelets/metabolism , Humans , Microfluidics/instrumentation , Thrombosis/diagnosis
6.
Platelets ; 33(4): 520-530, 2022 May 19.
Article in English | MEDLINE | ID: covidwho-1347990

ABSTRACT

We carried out a literature search in MEDLINE (PubMed) and EMBASE literature databases to provide a concise review of the role of viscoelastic testing in assessing peri-interventional platelet function and coagulation. The search identified 130 articles that were relevant for the review, covering the basic science of VHA and VHA in clinical settings including cardiac surgery, cardiology, neurology, trauma, non-cardiac surgery, obstetrics, liver disease, and COVID-19. Evidence from these articles is used to describe the important role of VHAs and platelet function testing in various peri-interventional setups. VHAs can help us to comprehensively assess the contribution of platelets and coagulation dynamics to clotting at the site-of-care much faster than standard laboratory measures. In addition to standard coagulation tests, VHAs are beneficial in reducing allogeneic transfusion requirements and bleeding, in predicting ischemic events, and improving outcomes in several peri-interventional care settings. Further focused studies are needed to confirm their utility in the peri-interventional case.


Subject(s)
Blood Coagulation Disorders , COVID-19 , Blood Coagulation , Blood Coagulation Tests , Hemostasis , Humans , Thrombelastography
SELECTION OF CITATIONS
SEARCH DETAIL